Правила рекомендательных технологий Достаевский.

Баллы списать сейчас нельзя,

но за этот заказ они будут начисленны позже.

Связаться с нами
Loyalty-Points

О рекомендательных технологиях

На информационном ресурсе применяются рекомендательные технологии

На информационном ресурсе при применении информационных технологий предоставления информации осуществляется сбор, систематизация и анализ сведений, относящихся к предпочтениям пользователей сети «Интернет», находящихся на территории Российской Федерации

Как формируются рекомендации

1. Собираем предпочтения клиентов

Невозможно рекомендовать человеку товар, когда не знаешь о его предпочтениях. Или, по крайней мере, о предпочтениях других клиентов, похожих на него. Поэтому Mindbox использует данные о действиях покупателей, например:

  •  просмотрах продуктов или категорий продуктов;
  • продуктах в «Избранном», корзине, листе ожидания или других списках;
  • составе и датах заказов;
  • взаимодействиях с коммуникациями. Это, например, открытие писем и переходы по ссылкам из рекламы.

Также для более точных рекомендаций могут учитываться данные о самих покупателях, например о:

  • местонахождении, чтобы показывать рекомендации для конкретного региона, и часовом поясе, чтобы делать это вовремя;
  •  поле или возрасте, чтобы предлагать подходящие продукты. Например, платья — женщинам, а фильмы 16+ — взрослым.

Все эти данные поступают в Mindbox с сайта, из мобильного приложения, касс, рекламных кабинетов.

2. Подбираем рекомендации на основе предпочтений

Есть три подхода к формированию рекомендаций:

Подбор похожих и сопутствующих продуктов. Алгоритмы анализируют свойства тех продуктов, которыми интересовался клиент: цвет, жанр, коллекцию, категорию или производителя. По этим признакам подбираются продукты, которые также могут его заинтересовать. Например, если покупатель искал на сайте зоомагазина собачий корм, в рекомендациях появятся товары для собак. Так клиент вспомнит, что нужно докупить шампунь для питомца. Хотя мог бы и не добраться до него, если бы просто листал витрину.

Рекомендации популярных продуктов. Алгоритм анализирует взаимодействие всех клиентов с продуктами и может подсказать тот, у которого самый высокий спрос или лучшие оценки. Это полезно, если клиент впервые пришел на сайт и о нем еще ничего неизвестно. Mindbox порекомендует то, что нравится большинству других покупателей. Например, на сайте мебельного магазина рядом с самыми популярными моделями появится виджет «Хиты продаж».

Рекомендации как для клиента с похожими предпочтениями. Алгоритм анализирует сходства в поведении клиентов. Если двум покупателям нравится одна и та же группа продуктов, их предпочтения похожи. Значит, первому можно рекомендовать то, что заинтересовало второго, и наоборот. Например, двум зрителям онлайн-кинотеатра нравятся вестерны и боевики. Один из них еще и фанат авторского кино — второму тоже можно порекомендовать этот жанр. Такой подход помогает выявлять неочевидные предпочтения и составлять более разносторонние рекомендации.

3. Уточняем рекомендации

После того, как рекомендации по предпочтениям составлены, можно сделать их еще точнее, добавив в Mindbox дополнительные условия. Например, показывать продукты только в географической зоне клиента. А также исключить из рекомендаций товары, которые покупают независимо от предпочтений — скажем, пакеты в супермаркетах.

 

Связаться с нами